[vc_empty_space][vc_empty_space]
Nanometer to submicrometer magnesium fluoride particles with controllable morphology
Nandiyanto A.B.D.a, Iskandar F.b, Ogi T.c, Okuyama K.a
a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Japan
b Department of Physics, Institut Teknologi Bandung, Indonesia
c Department of Chemical Engineering, Osaka Prefecture University, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Magnesium fluoride particles with controllable size (from several nanometers to submicrometers) and morphology (spherical and cubic forms) were successfully prepared via liquid-phase synthesis. The particles were synthesized from the reaction of MgCl2 and NH4Fin an aqueous solution at 75 °C for 1 h under a nitrogen atmosphere. Control of particle size was accomplished mainly by changing the concentration of the reactants, which could be qualitatively explained by conventional nucleation theory. Flexibility of the process in controlling particle morphology, from a spherical to a cubical form, was predominantly achieved by varying the concentration of MgCl2. Since the same XRD pattern was detected in particles with varying morphologies, the shape transformation was due to changes in particle growth. With the ability to control particle size and morphology, the creation of other inorganic particles is possible and has potential for many field applications. © 2010 American Chemical Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aqueous solutions,Controllable morphology,Controllable size,Cubic form,Field application,Inorganic particles,Liquid-phase synthesis,Magnesium fluoride,Nitrogen atmospheres,Nucleation theory,Particle growth,Particle morphologies,Particle size and morphologies,Shape transformation,Submicrometers,XRD patterns[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1021/la101194w[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]