Enter your keyword

2-s2.0-77958005544

[vc_empty_space][vc_empty_space]

Compressive stepped-frequency continuous-wave ground-penetrating radar

Suksmono A.B.a, Bharata E.a, Lestari A.A.a,b, Yarovoy A.G.b, Ligthart L.P.b

a International Research Centre for Telecommunications and Radar – Indonesian Branch, School of Electrical Engineering and Informatics, Research Center on Information and Communication Technology (PPTIK), ITB, Indonesia
b International Research Centre for Telecommunications and Radar, Delft University of Technology, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Data acquisition speed is an inherent problem of stepped-frequency continuous-wave (SFCW) radars, which may discourage further usage and development of this technology. We propose an emerging paradigm called compressed sensing (CS) to overcome this problem. In CS, a signal can be reconstructed exactly based on only a few samples below the Nyquist rate. Accordingly, the data acquisition speed can be increased significantly. A novel design of an SFCW ground-penetrating radar (GPR) with high acquisition speed is proposed and evaluated. Simulation by a monocycle waveform and actual measurement by a vector network analyzer at a GPR test range indicate the applicability of the proposed system. © 2006 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Basis Pursuits,Compressed sensing,Continuous waves,Data acquisition speed,Ground Penetrating Radar,Ground penetrating radars,Monocycle waveforms,Novel design,Nyquist rate,Over-complete,Stepped-frequency,Test range,Vector network analyzers[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Basis pursuit,compressed sensing (CS),convex optimization,overcomplete basis,signal reconstruction,stepped-frequency continuous-wave (SFCW) ground-penetrating radar (GPR)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Manuscript received October 6, 2008; revised February 10, 2009, June 25, 2009, and November 20, 2009. Date of publication April 26, 2010; date of current version October 13, 2010. This work was supported in part by the Bandung Institute of Technology under International Research Grant 2008 and in part by the International Research Centre for Telecommunications and Radar, Delft University of Technology, under Grant 2008. This letter was presented in part at GPR2008, Birmingham, U.K.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/LGRS.2010.2045340[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]