[vc_empty_space][vc_empty_space]
Expansion techniques on the super edge antimagic total graphs
Sudarsana I.W.a, Baskoro E.T.b, Uttunggadewa S.b, Ismaimuza D.a
a Combinatorial and Applied Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Universitas Tadulako (UNTAD), Indonesia
b Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A (p, g)-graph G is called (a,d)-edge antimagic total, in short (a,d)-EAMT, if there exist integers a > 0, d ≥ 0 and a bijection λ : V.U.E → {1,2, …,p + q} such that W = {w(xy): xy E} = {a,a + d, …,a+(q-l)d}, Where = \(x) + λ(y) + X(xy) is the edge-weight of xy. An (a, d)-EAMT labeling λ of G is super, in short (a,d)-SEAMT, if λ(V) = {1,2,— ,p}. In this paper, we propose some theorems how to construct the new (bigger) (a, d)- SEAMT graphs from old (smaller) ones.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text](a,d)-EAMT,(a,d)-SEAMT,Bijections,Edge-antimagic,Graph G,Total graph[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text](a,d)-EAMT,(a,d)-SEAMT,Dual labeling,Labeling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]