Enter your keyword

2-s2.0-78751628301

[vc_empty_space][vc_empty_space]

Breeding and void reactivity analysis on heavy metal closed-cycle water cooled thorium reactor

Permana S.a,c,d, Takaki N.b, Sekimoto H.a

a Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Japan
b Tokai University, Japan
c Nuclear and Biophysics Research Group, Department of Physics, Bandung Institute of Technology, Indonesia
d Japan Atomic Energy Agency, Nuclear Non-proliferation Science and Technology Center, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Design parameters of heavy water (D2O) cooled thorium breeder reactors for actinides closed-cycle cases have been investigated to find a design feasible area of breeding and negative void reactivity. Heavy metals (HMs) closed-cycle shows narrower feasible area compared with feasible area of 233U closed-cycle. In thorium fuel cycle, the breeding capability of the reactors becomes worse when all HMs are recycled. The result shows an opposite profile of breeding capability compared with uranium fuel cycle which obtains higher breeding capability when more HMs are recycled. Feasible design area which has a breeding and negative void reactivity can be estimated for higher burnup, even higher than 60 GW d/t for 233U closed-cycle; however, it is limited to 36 GW d/t for HM closed-cycle. Contribution of capture 235U is more significant to reduce breeding capability and contribution of 234U is also more effective to make the reactor more positive or less negative void coefficient for HM closed-cycle case in thorium fuel cycle system. © 2010 Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Breeder,Burn up,Closed cycle,Design parameters,Feasible design,Negative void,Negative void coefficient,Thorium fuels,Thorium reactor,Uranium fuels,Void reactivity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Breeder,Closed-cycle,Heavy water,Higher burnup,Negative void,Thorium[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.anucene.2010.10.009[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]