[vc_empty_space][vc_empty_space]
Density functional theory investigation on the dissociation and adsorption processes of N2 on Pd(111) and Pd3Ag(111) surfaces
Padama A.A.B.c, Ozawa N.a, Wibisono Budhi Y.b, Kasai H.c
a Department of Precision Science, Technology and Applied Physics, Osaka University, Japan
b Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Japan
c Laboratory of Chemical Reaction Engineering and Catalyst, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The dissociation and adsorption processes of N2 on Pd(111) and Pd3Ag(111) surfaces are investigated using density functional theory (DFT). The dissociation of N2 molecule on Pd(111) is most efficient if its center-of-mass (CM) is fixed on top of Pd atom while allowing the N atoms to dissociate on the hollow sites [hcp hollow-top-fcc hollow (h-t-f) configuration] with an activation barrier of 5.94 eV. In Pd3Ag(111), N2 also prefers dissociating along the h-t-f configuration but the activation barrier is higher, 6.01 eV, and is attributed to the presence of Ag atom. The local density of states (LDOS) of the d-orbital of surface atoms shows that the presence of Ag had reduced the density of states in the region around the Fermi level which causes the higher activation barrier observed towards N2. Chargedifference distribution also shows that there is a greater gain of charges of N2 from the surface atoms of Pd(111) surface which induces repulsion and resulting to the dissociation to individual N atoms. This further explains the easier dissociation and adsorption of N2 on Pd(111) as compared to Pd3Ag(111) surface. © 2011 The Japan Society of Applied Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Activation barriers,Adsorption process,Ag atoms,Ag(111) surface,Center-of-mass,Density of state,Hollow sites,Local density of state,Pd atoms,Surface atoms[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1143/JJAP.50.045701[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]