Enter your keyword

2-s2.0-79958856471

[vc_empty_space][vc_empty_space]

Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water

Rasrendra C.B.a,b, Fachri B.A.a, Makertihartha I.G.B.N.b, Adisasmito S.b, Heeres H.J.a

a Chemical Engineering Department, University of Groningen, Netherlands
b Chemical Engineering Department, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. AlIII salts were identified as the most promising and essentially quantitative LA yields (>90 mol %) were obtained at 140 °C and a reaction time of 90 min. A reaction pathway is proposed and a kinetic model using the power law approach was developed for the conversion of DHA to LA with pyruvaldehyde (PRV) as the intermediate. Good agreement between experimental data and the model was obtained. Model predictions, supported by experiments, indicate that a high yield of LA is favoured in dilute solutions of DHA (0.1 M) at elevated temperatures (180 °C) and reaction times less than 10. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Catalytic conversion,Dihydroxyacetone,Dilute solution,Elevated temperature,Experimental data,High yield,Homogeneous catalyst,Kinetic models,Metal salt,Model prediction,Power law,Reaction pathways,Renewable resource,Sustainable chemistry,trioses[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]kinetics,lactic acid,renewable resources,sustainable chemistry,trioses[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/cssc.201000457[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]