Enter your keyword

2-s2.0-79959840664

[vc_empty_space][vc_empty_space]

On the metric dimension of corona product of graphs

Iswadi H.a, Baskoro E.T.b, Simanjuntak R.b

a Department of MIPA, Universitas Surabaya, Indonesia
b Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]For an ordered set W = {w1, w2,?, wk} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple r(v|W) = (d(v, w1), d(v, w2),?, d(v, wk)), where d(x, y) represents the distance between the vertices x and y. The set W is called a resolving set for G if every vertex of G has a distinct representation. A resolving set containing a minimum number of vertices is called a basis for G. The metric dimension of G, denoted by dim(G), is the number of vertices in a basis of G. A graph G corona H, G⊙H, is defined as a graph which is formed by taking n copies of graphs H1, H2,?, Hn of H and connecting ith vertex of G to the vertices of Hi In this paper, we determine the metric dimension of corona product graphs G⊙H, the lower bound of the metric dimension of K1+ H and determine some exact values of the metric dimension of G⊙H for some particular graphs H. © 2011 Puspha Publishing House.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Basis,Corona product graph,Metric dimension,Resolving set[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]