Enter your keyword

2-s2.0-79960704558

[vc_empty_space][vc_empty_space]

Boiler performance optimization using fuzzy logic controller

Handi Santoso M.H.a, Nazaruddin Y.Y.a, Muchtadi F.I.a

a Department of Engineering Physics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper considers an approach to design a controller used for the air-to-fuel ratio (AFR) optimization in the combustion process of a power plant boiler. The optimization of the AFR will reduce the excess air level and improve the combustion efficiency in the boiler system. The combustion improvement indicates boiler operating cost savings. The fuzzy logic controller, which is a method of a rule-based decision making based on human knowledge, was developed for the combustion process and its performance and effectiveness were then compared with the classical PI controller. Simulation results demonstrate how the designed fuzzy logic controller performs well to the optimization of the AFR in the combustion process and applying the controller to the combustion process will result in significant operating annual cost savings in the boiler operation. Copyright © 2005 IFAC.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Annual cost,Boiler operations,Boiler systems,Combustion efficiencies,Combustion process,Excess air,Fuzzy logic controllers,Human knowledge,Performance optimizations,PI controller,Power plant boiler,Rule-based decision making,Simulation result[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Boilers,Combustion process,Fuzzy control,Optimization,PI controller[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]