[vc_empty_space][vc_empty_space]
Fracture mechanics analysis of geometrically nonlinear shear deformable plates
Purbolaksono J.a, Dirgantara T.b, Aliabadi M.H.c
a Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Malaysia
b Department of Aeronautics and Astronautics, Institute of Technology Bandung, Indonesia
c Department of Aeronautics, Faculty of Engineering, Imperial College London, United Kingdom
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper presents boundary integral equations for fracture mechanics analysis of geometrically nonlinear shear deformable plates. A radial basis function and dual reciprocity method are utilized to evaluate the derivative terms and the domain integrals that appear in the formulations, respectively. Numerical examples of the clamped and simply supported plates containing a center crack subjected to uniform transversal loadings are presented. Displacement extrapolation technique is used to compute the stress intensity factors (SIFs). Stress intensity factors of mode I for plate bending and membrane problems are presented. The normalized stress intensity factors in membrane significantly increase after few increments of the load while the normalized stress intensity factors in bending decrease. Less displacement and rotational constraints in cracked plates under uniform transversal loadings will raise the stress intensity factors. The bending stress intensity factors of a central crack in clamped square plate were found to be the highest values compared to those for clamped non-square plates. © 2011 Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dual boundary-element method,Dual reciprocity,Geometrically nonlinear,Shear deformable plate,Stress intensity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Crack,Dual boundary-element method,Dual reciprocity,Geometrically nonlinear,Shear deformable plates,Stress intensity factors[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank Queen Mary and Westfield Research Council, University of London, United Kingdom for financial support during completion of this work.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.enganabound.2011.07.003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]