Enter your keyword

2-s2.0-80053959963

[vc_empty_space][vc_empty_space]

Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane

Triwahyono S.a, Jalil A.A.a, Mukti R.R.b, Musthofa M.a, Razali N.A.M.a, Aziz M.A.A.a

a Ibnu Sina Institute for Fundamental Science Studies, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
b Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The impregnation of zinc particles into MFI zeolite (HZSM-5) caused the formation of catalytically active protonic acid sites for isomerizing n-pentane in the presence of hydrogen. An infrared (IR) study with preadsorbed pyridine revealed that these protonic acid sites originated from the spillover of molecular hydrogen from the zinc species onto the zeolite surface. The requirements for this spillover effect were further studied by IR spectroscopy of adsorbed ammonia and carbon monoxide. The presence of zinc species in HZSM-5 suggested the exchange of acidic character towards strong Lewis acids rather than Brønsted acid sites. The isomerization of n-pentane over the Zn/HZSM-5 catalyst resulted in high activity and stability and the conversion to iso-pentane depends on the promotive effect of hydrogen as a carrier gas. © 2011 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lewis acid site,Molecular hydrogen,N-pentane,Protonic acid,Zn/HZSM-5[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lewis acid sites,Molecular hydrogen,n-Pentane isomerization,Protonic acid sites,Zn/HZSM-5[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) under E-Science Fund Research Projects No. 03-01-06-SF0020 and 03-01-06-SF0564 . Our gratitude also goes to the Hitachi Scholarship Foundation for the Gas Chromatograph Instruments Grant and Center for Research and Instrumentation Management (CRIM, UKM) for the XPS data and analysis.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.apcata.2011.08.027[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]