[vc_empty_space][vc_empty_space]
Static anti-windup compensator design of linear Sliding Mode Control for input saturated systems
Septanto H.a,b, Syaichu-Rohman A.a,b, Mahayana D.a
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b Center for Satellite Technology, National Institute of Aeronautics and Space, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A feedback control system involving a linear Sliding Mode Controller (SMC) and an input saturated linear plant is considered here. The linear SMC is designed for linear plant without saturation on its input. The resulting feedback system will not necessarily show an intended performance if the control input to the plant is saturated. In addition, a directionality problem for multivariable input systems may occur during the saturation. As a result, transient response performance could be degraded and its control signals may not be stabilizing the feedback system anymore. In this case, a directionality compensator may be designed to overcome the problem while optimizing its performance. A static anti-windup compensator as a directionality compensator is designed through a Linear Matrix Inequality (LMI)-based synthesis. The LMI conditions are derived based on a chosen Lyapunov function to ensure the stability of its closed loop system and an ℒ2-gain performance. The static anti-windup compensator is in fact a nonlinear algebraic loop and its implementation needs to be robust to delay. Therefore, an additional LMI constraint is also employed to guarantee the robustness. Two Input-Two Output (TITO) ill-conditioned plants are then considered to validate the effectiveness of the proposed design through simulations. Simulation runs have shown that the static anti-windup compensators effective in minimizing the performance degradation due to directionality problem while maintaining the stability of the input saturated closed loop system. © 2011 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Algebraic loops,Anti-windup compensator,Control inputs,Control signal,directionality problem,Feedback systems,Gain performance,Ill-conditioned,Input systems,Linear plants,LMI constraints,LMI-condition,Multi variables,Performance degradation,Saturated systems,Sliding mode controller[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]directionality problem,linear matrix inequality,Sliding mode controller,static anti-windup compensator[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2011.6021650[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]