Enter your keyword

2-s2.0-80054043284

[vc_empty_space][vc_empty_space]

Human action recognition using Dynamic Time Warping

Sempena S.a, Maulidevi N.U.a, Aryan P.R.a

a Institut Teknologi Bandung, School of Electrical Information Engineering, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Human action recognition is gaining interest from many computer vision researchers because of its wide variety of potential applications. For instance: surveillance, advanced human computer interaction, content-based video retrieval, or athletic performance analysis. In this research, we focus to recognize some human actions such as waving, punching, clapping, etc. We choose exemplar-based sequential single-layered approach using Dynamic Time Warping (DTW) because of its robustness against variation in speed or style in performing action. For improving recognition rate, we perform body part tracking using depth camera to recover human joints body part information in 3D real world coordinate system. We build our feature vector from joint orientation along time series that invariant to human body size. Dynamic Time Warping is then applied to the resulted feature vector. We examine our approach to recognize several actions and we confirm our method can work well with several experiments. Further experiment for benchmarking the result will be held in near future. © 2011 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Athletic performance analysis,Body parts,Content-based video retrieval,Depth camera,Dynamic Time Warping,exemplar-based approach,Feature vectors,Human actions,Human bodies,Human joints,Human-action recognition,Potential applications,Recognition rates,World coordinates[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]depth camera,Dynamic Time Warping,exemplar-based approach,human action recognition[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2011.6021605[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]