[vc_empty_space][vc_empty_space]
Perpendicular easy axis alignment of FePt nanoparticles on a platinum-(001) buffer layer for high-density magnetic recording
Matsui I.a, Ogi T.b, Iskandar F.c, Okuyama K.b
a Toshiba Corporate Research Development Center, Japan
b Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Japan
c Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The phenomenon of atomic motion between the nanoparticle and its substrate was examined in constructing perpendicularly aligned FePt nanoparticle structures. Samples of iron-rich FePt nanoparticles synthesized by vapor phase or liquid phase synthesis techniques were deposited on a platinum-(001) buffer layer and annealed in a hydrogen atmosphere. Superconductive quantum interference device and x ray diffraction measurements for the in-plane and out-of-plane direction exhibited perpendicularly oriented magnetization and an L10 ordered phase with a perpendicular easy axis orientation. The coercivity was measured as approximately 4.3 kOe. In addition, high angle annular dark field-scanning transmission electron microscopy showed FePt alloy formation normal to the sample surface. The atomic distribution data showed iron diffusion into the platinum layer. These results might open a new path toward ultrahigh density storage media from chemically synthesized FePt nanoparticles. © 2011 American Institute of Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Atomic distribution,Atomic motion,Easy axis,Fe-Pt nanoparticle,FePt alloys,High-density magnetic recording,Hydrogen atmosphere,In-plane,Liquid-phase synthesis,Ordered phase,Out-of-plane direction,Sample surface,Ultrahigh density storage,Vapor Phase,X-ray diffraction measurements[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Financial support from the New Energy and Industrial Technology Development Organization is greatly appreciated. The authors also express their appreciation to Professor Yamaguchi of Tokyo University.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.3644925[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]