[vc_empty_space][vc_empty_space]
On the super edge-magic deficiency of forests
Baig A.Q.a, Ahmad A.a, Tri Baskoro E.a,b, Simanjuntak R.b
a Abdus Salám School of Mathematical Sciences, Government College University, Pakistan
b Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Let G = (V, E) be a finite, simple and undirected graph having |V(C7)| = p and \E(G)\ = q. A super edge-magic labeling of a graph G is a bijection f : V(G) U E(G) → {1,2, ⋯,p + q}, where f (V(G)) = {1,2, ⋯,p} and there exists a constant c such that f(u) + f(uv) + f(v) = c, for every edge uv € E(G). The super edge-magic deficiency of a graph G, denoted by p,(G), is the minimum nonnegative integer n such that GUnK1 has a super edgemagic total labeling or +∞ if there exists no such n. In this paper, we study the super edge-magic deficiencies of a forest consisting of at most three components. In particular, we determine the super edge-magic deficiency of a forest formed by paths, stars, comb, banana trees, and subdivisions of K 1,3.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]