Enter your keyword

2-s2.0-8344236726

[vc_empty_space][vc_empty_space]

Performance of adaptive beamforming by using complex-valued neural network

Suksmono A.B.a, Hirose A.b

a Dept. of Electrical Engineering, Institut Teknologi Bandung, Indonesia
b Grad. School of Frontier Sciences, University of Tokyo, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper presents a performance analysis of adaptive beamforming (ABF) by using complex-valued neural network (CVNN). We compare the performance of conventional complex-valued Least Mean Square (CLMS)-based ABF with that of multilayer CVNN’s, using the beamforming results of exact matrix method as a reference. Experiments for multiple beam-pointing and multiple null-steering shows that the CVNN-based ABF outperform the CLMS-based ABF in terms of convergence speed and interferences suppression level. Additionally, the solution of CVNN-based ABF is closer to the exact solution, than the CLMS is.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaptive beam forming (ABF),Adaptive methods,Complex-valued neural networks (CVNN),Wideband code division multiple access (WCDMA),Adaptive Beamforming,Complex-valued neural networks,Convergence speed,Exact solution,Least mean squares,Matrix methods,Performance analysis,Suppression level[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-540-45226-3_43[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]