[vc_empty_space][vc_empty_space]
Analysis of mechanical properties of single-wall carbon nanotube by using finite element method
Ali A.a, Iskandar F.a, Abdullah M.a, Khairurrijala
a Physics of Electronic Materials Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Single-wall carbon nanotubes (SWCNT) is a material which has special characteristics depending on its carbon atomic structures. These structures are modeled with computational method; therefore its mechanical properties can be estimated. The model used finite element method subtituting molecular bonds with equivalent-continuum model. In this study, molecular bonds are subtituted by truss model which has similar mechanical and geometrical properties. The present model is developed by bending graphene sheet model around its vertical edge to form SWCNT, which, then, it could be characterized to find its mechanical properties. Two kinds of SWCNTs are considered in this study based on their structures. They are armchair and zigzag structures, which have chirality paramaters (n,0) and (n,n), respectively. The geometrical structures of SWCNT are distinguished by considering its chirality. Therefore, in this study, we estimate and compare the mechanical properties from those two structures. The calculation of SWCNT mechanical properties are established by Hooke’s Law approach using finite element method. The simulations are performed by giving tensile load upon SWCNT longitudinal direction and Young’s modulus of various SWCNTs are then effectively predicted. As a result, the variation of geometrical structures, such as chirality, length, and diameter, leads to various values of Young’s modulus. © 2011 American Institute of Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]chirality,Single-wall carbon nanotubes,Young’s modulus[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.3667256[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]