Enter your keyword

2-s2.0-84855951683

[vc_empty_space][vc_empty_space]

Coronary angiogram stabilization for QuBE values calculation using SIFT method

Kusumawardhani A.a, Mengko T.L.R.a, Fahri I.b, Soerianata S.b, Firman D.b, Zakaria H.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b Harapan Kita National Cardiovascular Center, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In clinical practice, Myocardial Blush Grade (MBG) has been used to obtain information about microvascular condition in myocardial infarction by using coronary angiogram. Quantitative Blush Evaluator (QuBE) program was developed for the calculation of myocardial perfusion score. Calculation of QuBE values is often affected by patient motion and become inaccurate. In this paper, we proposed an algorithm to reduce undesired motion in coronary angiogram. This algorithm correct frame motion by shifting each single frame according to the best correlation with the first frame. The effectiveness of this stablizing method achieved by searching scale-invariant feature from each frame of coronary angiogram in order to find the best correlation between two frame. The results showed that MBG categorization based on modified QuBE program exactly match with the original QuBE program. In addition, results also showed that application of stabilization algorithm using SIFT method decreased the deviation by 15% therefore it increased the accuracy of QuBE value calculation. Finally, this new algorithm also decreased the execution time by 71% so the doctor could faster patient diagnosis. In conclusion the new algorithm could enhance the qualitiy of QuBE value calculations in MBG scoring for coronary angiogram. © 2011 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Clinical practices,Coronary angiography,Execution time,Microvascular,myocardial blush grade,Myocardial Infarction,Myocardial perfusion,Patient diagnosis,Patient motions,quantitative blush evaluator,Scale invariant feature transforms,Scale-invariant,Stabilization algorithms[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]coronary angiography,myocardial blush grade,quantitative blush evaluator,scale-invariant feature transform,stabilization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2011.6108605[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]