[vc_empty_space][vc_empty_space]
Development of an optical motion-capture system for 3D gait analysis
a Faculty of Mechanical and Aerospace Engineering, InstitutTeknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This work presents the development of an optical motion-capture system for 3D gait analysis. The system consists of two video cameras with speed of 25 fps, flash lighter, LED markers, and two PCs and technical computing software, which are used to acquire marker motion attached to human body during walking. The developed system has five module to obtain real coordinate of markers, i.e. pre-processing, camera calibration, marker detection and tracking, 3D reconstruction, and post-processing module. In the experiment, two camcorders are synchronized using flashlight. The recorded videos from experiment are extracted into frames. The synchronized framesare converted into binary images and marker position can be detected and tracked using least distance method. 3D Direct Linear Transformation method has been used to reconstruct 3D marker position in real coordinate. The marker positions data obtained from experiment could then be used for further kinematics and kinetics analysis of human gait. © 2011 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3D reconstruction,3DGait Analysis,Camera calibration,Detection and tracking,Direct linear transformation,Direct linear transformation method,Distance method,Human bodies,Human gait,Kinetics analysis,Motion capture,Post processing,Pre-processing,Real coordinates,Technical computing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3D Direct Linear Transformation,3DGait Analysis,Camera Synchronization,Image Processing,Least Distance Method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2011.6108633[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]