Enter your keyword

2-s2.0-84856235043

[vc_empty_space][vc_empty_space]

Electromagnetic wave scattering by a small impedance particle: Theory and modeling

Andriychuk M.I., Indratno S.W.b, Ramm A.G.c

a Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, NASU, Ukraine
b Bandung Institute of Technology, Mathematics Department, Indonesia
c Mathematics Department, Kansas State University, United States

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Electromagnetic (EM) waves, scattered by a small impedance particle of arbitrary shape, embedded in a homogeneous medium, are calculated by a new analytic formula. The range of applicability and the accuracy of this formula are illustrated by numerical results. The formula was derived in (*) A.G.Ramm, Optics Communications, 284,(2011), 3872-3877. The accuracy of the new formula is estimated by a comparison with the Mie-type solution for an impedance sphere. The novelty of our paper is in the demonstration of the range of applicability of the new formula and its practical value, by the numerical results and their comparison with the exact solution for EM wave scattering by impedance spheres. The exact solution is obtained in the form of Mie-type series, and is new. Estimate of the error of this series, in which five terms are kept, shows that the relative error of this solution is less than 10 – 3 for the parameters’ range considered. The numerical results obtained are of interest to a wide audience, and the novelty of the formula from (*) is in its applicability to wave scattering by small particles of arbitrary shapes, when Mie-type solution is not applicable. © 2011 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytic formula,Arbitrary shape,E-M waves,Exact solution,Homogeneous medium,Numerical results,Optics communication,Relative errors,Theory and modeling,Wave scattering[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electromagnetic wave scattering,Particles of arbitrary shapes,Small impedance particles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.optcom.2011.12.055[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]