Enter your keyword

2-s2.0-84856507700

[vc_empty_space][vc_empty_space]

Switching algorithm for robust configuration control of a wheeled vehicle

Widyotriatmo A.a, Hong K.-S.b

a Instrumentation and Control Research Group, Bandung Institute of Technology, Indonesia
b Department of Cogno-Mechatronics Engineering and School of Mechanical Engineering, Pusan National University, South Korea

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper, a robust configuration (i.e., position and orientation) control of an industrial forklift is investigated. The equations of motion of a typical forklift are derived. Configuration control utilizing three navigation variables (i.e., the distance to the goal point and two split angles of the orientation error) is designed. Considering that an industrial forklift should move forward and backward effectively depending on the location of a goal point, control laws with regard to forward and backward movements are separately derived. For a nominal model that does not include any uncertainty, the developed control law assures the uniform asymptotic stability. However, in the presence of uncertainties, the control law guarantees that the solutions of three navigation variables are uniformly bounded. The effectiveness of the developed algorithm is demonstrated through simulations and experiments. © 2011 Elsevier Ltd.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Configuration control,Control laws,Forklift,Forward and backward movement,Goal points,Lyapunov,Nominal models,Orientation error,Switching algorithms,Uniform asymptotic stability,Uniformly bounded,Wheeled vehicles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Configuration control,Forklift,Lyapunov method,Mobile robot,Robustness[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the Regional Research Universities Program (Research Center for Logistics Information Technology, LIT) and the World Class University (grant no. R31-20004 ) granted by the National Research Foundation of Korea under the Ministry of Education, Science and Technology, Korea.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.conengprac.2011.11.007[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]