[vc_empty_space][vc_empty_space]
Performance evaluation of SVM-based information extraction using τ margin values
Kuspriyantoa,b, Santoso O.S.b, Widyantoro D.H.b, Sastramihardja H.S.b, Muludi K.b,c, Maimunah S.b,d
a Computer Engineering Research Group, Indonesia
b School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia
c Soil Science Department, Agriculture Faculty – University of Lampung, Indonesia, Indonesia
d Information System Dept, Information Tech. Faculty, Surabaya Adhitama Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The rapid growth of Internet causes the abundance of textual information. It is necessary to have smart tools and methods than can access text content as needed. One of the success methods is Support Vector Machine (SVM). This paper will discuss how the performance of the SVM-GATE algorithm on extracting information from Indonesian language corpus in response toτ margin variation. Experimental results show that there is optimumτ margin for both Indonesian corpus of Vegetable Market and Seminar Announcement Corpus. The best Performance of SVM-GATE obtained at the τ Margin of 0.5 and the Window Size of 4×4.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bahasa indonesia corpus,GATE,Information extraction,NLP,Optimum margin,Support vector machine[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.15676/ijeei.2010.2.4.1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]