[vc_empty_space][vc_empty_space]
Rectangular to circular waveguide converter for microwave devices characterization
Munir A.a, Musthofa M.F.Y.a
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper, a rectangular to circular waveguide converter is investigated numerically and characterized experimentally for microwave devices characterization. The converter is designed as an excitation method of circular waveguide to produce its dominant mode as the problem of circular waveguide in the excitation process. A WR248 type rectangular waveguide transducer with working frequency of 2.60-3.95GHz for TE10 mode is used as the wave exciter to be converted to a WC248 type circular waveguide. Prior to the fabrication, physical parameters of converter including length of rectangular segment, length of transition segment and length of circular segment are analyzed to obtain the optimum design. It shows that the length of transition segment affects to the return loss of converter and its length to produce TE11 mode of circular waveguide smoothly has to be more than twice of waveguide wavelength. From the result, the length of transition segment is chosen to be 275mm as it demonstrates better return loss compared to other lengths almost in the designated working frequency. To verify the design result, the prototype of converter is then realized and characterized experimentally. Furthermore, some discussion related to the results of experimental characterization is also presented.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Circular waveguide,Dominant mode,Excitation,Rectangular waveguide,Waveguide converter[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.15676/ijeei.2011.3.3.7[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]