[vc_empty_space][vc_empty_space]
Decomposition of dichlorobenzene in a dielectric barrier discharge
a Department of Chemical Engineering, Institut Teknologi Bandung, Kampus ITB, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper presents a decomposition study of 1,2-dichlorobenzene (DCB) using a dielectric barrier discharge (DBD). The discussion is focused on the effects of variations of carrier gases, DCB concentrations and input voltages on the decomposition performance. The DCB conversion was conducted inside a cylindrical reactor consists of silver film as the outside electrode and a spring coil as the inside electrode. Two carrier gases, i.e. air and nitrogen, were introduced to the reactor at a total flow rate of 500 mL/min with DCB concentrations of 100, 300 and 500 ppm. Gaseous products, before and after plasma treatment, were analysed by a gas chromatography and FT-IR spectroscopy, and the consumed power was calculated from Lissajous figure analysis. In order to improve the decomposition performance, various TiO2-supported catalysts were employed. © 2012 Taylor & Francis.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]1 ,2-dichlorobenzene,Carrier gas,Cylindrical reactors,Decomposition performance,Dichlorobenzenes,dielectric barrier discharge,Dielectric barrier discharges,FTIR spectroscopy,Gaseous products,Input voltages,Lissajous figures,non-thermal plasma,plasma catalyst,Plasma treatment,Silver film,Spring coils,TiO[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]1,2-dichlorobenzene,dielectric barrier discharge,non-thermal plasma,plasma catalyst[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/09593330.2011.587026[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]