Enter your keyword

2-s2.0-84859796996

[vc_empty_space][vc_empty_space]

Blood vessel segmentation in complex-valued magnetic resonance images with snake active contour model

Handayani A.a, Suksmono A.B.a, Mengko T.L.R.a, Hirose A.b

a Institut Teknologi Bandung, Indonesia
b University of Tokyo, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour modelbased blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm. Copyright © 2010, IGI Global.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Blood Vessel,Phase-Contrast Magnetic Resonance Imaging,Segmentation,Simulated Annealing,Snake Active Contour Model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4018/jehmc.2010010104[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]