[vc_empty_space][vc_empty_space]
Misalignment effect in the split Hopkinson pressure bar technique
Kariem M.A.a,b, Beynon J.H.a, Ruan D.a
a Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Australia
b Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]It is well known that alignment of the bar in a split Hopkinson pressure bar (SHPB) experiment plays a significant role in producing a good clean signal. In this paper, numerical simulations using ANSYS-LSDYNA are employed to comprehensively study the effects of bar misalignment in producing a distorted signal. There are six major types of bar misalignment that are commonly experienced: offset of neutral axis, uneven support height, non-parallel impact face, bar straightness, dome and cone impact face shapes. The numerical simulations are divided into two main sections, i.e. bar calibration and conventional SHPB testing. The distorted signal generated by misalignment produces unreliable data analysis and is mainly due to the presence of a flexural mode of vibration. Recommendations on selecting bar specifications to minimize the deviation of results are presented. © 2012 Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bar misalignment,Bar production,Distorted signals,Face shapes,Flexural modes,Kolsky bar,Misalignment effects,Neutral axis,Split hopkinson pressure bar techniques,Split Hopkinson pressure bars[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bar misalignment,Bar production tolerances,Distorted signal,Numerical simulation,SHPB (Kolsky bar)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The first author would like to acknowledge Swinburne University of Technology for the financial support through a Swinburne University Postgraduate Research Award scholarship. The authors would like to thank the staff at Faculty of Engineering and Industrial Sciences workshop, in particular Mr. Walter Chetcuti, for helping in the data acquisition, and Mr. Alec Papanicolau and Mr. David Vass for preparing the specimens and the bars.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijimpeng.2012.03.006[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]