[vc_empty_space][vc_empty_space]
On Ramsey (2K 2, 2P n)-minimal graphs
Tatanto D.a, Baskoro E.T.a
a Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Let G and H be two given graphs. The notation F → (G,H) means that any red-blue coloring on the edges of F will create either a red subgraph G or a blue subgraph H in F. A graph F is a Ramsey (G,H)-minimal graph if F satisfies two conditions: (1) F → (G,H), and (2) F* (G,H) for any proper subgraph F* ⊂ F. Denote by R(G,H) the set of all (G,H)-minimal graphs. In this paper, we give necessary conditions for the members of R(2K 2, 2P n) for n ≥ 3. We prove that 3P n and F ∪ G are the only disconnected graphs in R(2K 2, 2P n) for any connected graphs F,G R(2K 2,P n). In particular, we determine all graphs in R(2K 2, 2P 3). © 2012 American Institute of Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text](G,H)-coloring,2K2,Path,Ramsey minimal graph[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4724122[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]