Enter your keyword

2-s2.0-84861943292

[vc_empty_space][vc_empty_space]

Multi-centered metric on (n+1)-dimensional static spacetimes

Wahyoedi S.A.a, Gunara B.E.b

a Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Institut Teknologi Bandung, Indonesia
b Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper, we construct explicitly a multi-centered metric in (n+1)-dimensional static spacetimes which belong to a class of (pseudo)-Riemannian manifolds. Our starting point is to embed an n-dimensional complete manifold into an (n+1)-dimensional manifold which admits a timelike Killing vector. Then, the scalar curvature depends on the Laplace-Beltrami operator of the n-dimensional submanifold. This operator is set to be equals to the linear combination of the Dirac-delta function on the submanifold which can be thought of as remove points on (n+1)-dimensional manifold. Using completeness of the n-dimensional submanifold it can be shown that the solution does indeed exist. As an example we give the explicit form for flat Euclidean geometries, sphere, and hyperbolic geometries. © 2012 American Institute of Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text](pseudo)-Riemannian manifold,Green’s function,Multi-centered metric,Poisson’s equation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4724153[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]