Enter your keyword

2-s2.0-84862648097

[vc_empty_space][vc_empty_space]

Spherical Symmetric Dyonic Black Holes and Vacuum Geometries in 4 D N=1 Supergravity on Kähler-ricci Soliton

Gunara B.E.a

a Indonesia Center for Theoretical and Mathematical Physics (ICT MP), Theoretical Physics Lab., Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper we consider several aspects of dyonic non-supersymmetric black holes in fourdimensional N = 1 supergravity coupled to chiral and vector multiplets. The scalar manifold can be considered as a one-parameter family of Kähler manifolds generated by a Kähler-Ricci flow equation. This setup implies that we have a family of dyonic non-supersymmetric black holes deformed with respect to the flow parameter related to the Kähler-Ricci soliton, which possibly controls the nature of black holes, such as their asymptotic and near horizon geometries. We mainly consider two types of black holes, namely a family of dyonic Reissner-Nordströmlike black holes and Bertotti-Robinson-like black holes where the scalars are freezing all over spacetime and at the horizon, respectively. In addition, the corresponding vacuum structures for such black holes are also discussed in the context of Morse-(Bott) theory. Finally, we give some simpleCP n-models whose superpotential and gauge couplings have a linear form. © 2012 Polish Scientific Publishers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Black holes,Kähler-Ricci flow,Morse theory,Supergravity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/S0034-4877(12)60032-9[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]