Enter your keyword

2-s2.0-84867333653

[vc_empty_space][vc_empty_space]

Last time buy decisions for products sold under warranty

Van Der Heijden M.a, Iskandar B.P.b

a School of Management and Governance, University of Twente, Netherlands
b Department of Industrial Engineering, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Manufacturers supplying products under warranty need a strategy to deal with failures during the warranty period: repair the product or replace it by a new one, depending on e.g. age and/or usage of the failed product. An (implicit) assumption in virtually all models is that new products to replace the failed ones are immediately available at given replacement costs. Because of the short life cycles of many products, manufacturing may be discontinued before the end of the warranty period. At that point in time, the supplier has to decide how many products to put on the shelf to replace failed products under warranty that will be returned from the field (the last time buy decision). This is a trade-off between product availability for replacement and costs of product obsolescence. In this paper, we consider the joint optimization of repair-replacement decisions and the last time buy quantity for products sold under warranty. We develop approximations to estimate the total relevant costs and service levels for this problem, and show that we can easily find near-optimal last time buy quantities using a numerical search. Comparison to discrete event simulation results shows an excellent performance of our methods. © 2012 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Excellent performance,Inventory,Joint optimization,Last time buy,New product,Numerical search,Product availability,Replacement costs,Service levels,Spare parts,Warranty,Warranty period[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Inventory,Last time buy,Maintenance,Reliability,Spare parts,Warranty[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We thank the Scientific Programme Indonesia – Netherlands (SPIN) of the Royal Netherlands Academy of Arts and Sciences (KNAW) for partial funding of this research. This research is part of the ProSeLo project that is sponsored by the Dutch Institute for Advanced Logistics (Dinalog) .[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ejor.2012.07.041[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]