Enter your keyword

2-s2.0-84867351017

[vc_empty_space][vc_empty_space]

Sensitivity study of 3-D modeling for multi-D inversion of surface NMR

Warsaa, Grandis H.a

a Applied Geophysics Research Group-FTTM, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Geophysical field method of surface nuclear magnetic resonance (SNMR) allows a direct determination of hydrogeological parameters of the subsurface. The amplitude of the SNMR signal is directly linked to the amount of mobile water. The relaxation behaviour of the signal correlates with pore sizes and hydraulic conductivities of an aquifer. For improving capability and reliability of SNMR method we have presented a forward modeling scheme of 3-D water content and decay time structures that can be used for multi-D interpretation. Currently SNMR is carried out mainly with a 1-D working scheme using coinciding loops. For each sounding point using a coincident circular loop antenna, the amplitudes and decay times of the SNMR signal are the product of a three dimensional distribution of the water content and decay time in the subsurface and their sensitivity to the receiver. The antenna is moved at the surface and the SNMR relaxation signal are plotted as a function of the pulse moment and sounding point. The errors might be very large by neglecting the 2-D or even 3-D geometry of the structures which have to be considered in the analysis and inversion in the future. The results show that the 3-D modeling is reliable and flexible to be integrated into the 2-D/3-D inversion scheme for inverting surface NMR data to recover a multi-D distribution of water content and decay time of an aquifer. © 2012 American Institute of Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3-D modeling,Hydrogeological parameters,Inversion,MRS,Snmr[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4730704[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]