Enter your keyword

2-s2.0-84868377250

[vc_empty_space][vc_empty_space]

Giant magnetoresistance in (Ni 60Co 30Fe 10/Cu) trilayer growth by opposed target magnetron sputtering

Ramlia,b, Djamal M.a, Haryanto F.a, Viridi S.a, Khairurrijala

a Department of Physics, Institut Teknologi Bandung, Indonesia
b Department of Physics, Universitas Negeri Padang, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The giant magnetoresistance thin film of (Ni 60Co 30Fe 10/Cu) trilayer were grown onto Si (100) substrate by dc-opposed target magnetron sputtering (dc-OTMS) technique. The growth parameters are: temperature of 100 °C, applied voltage of 600 volt, flow rate of Ar gas of 100 sccm, and growth pressure of 5.2 x10 -1 Torr. The effects of Cu layer thickness and NiCoFe layer thickness on giant magnetoresistance (GMR) property of (Ni 60Co 30Fe 10/Cu) trilayer were studied. We have found that the giant magnetoresistance (GMR) ratio of the sample was varied depend on the non-magnetic (Cu) layer thickness. The variation of Cu layer thickness presents an oscillatory behavior of GMR ratio. This oscillation reflects the exchange coupling oscillations between ferromagnetic and antiferromagnetic states, which are caused by an oscillation in the sign of the interlayer exchange coupling between ferromagnetic layers. The GMR ratio is change with increasing of NiCoFe layer thickness and presents GMR ratio of 70.0 % at t NiCoFe = 62.5 nm. © (2012) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Applied voltages,Coupling oscillations,Cu layers,Ferromagnetic,Ferromagnetic and anti-ferromagnetic,Ferromagnetic layers,Growth parameters,Growth pressure,Interlayer exchange coupling,Layer thickness,Magnetoresistance thin film,Nonmagnetics,Oscillatory behaviors,Si (100) substrate,Target magnetron,Trilayers[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Ferromagnetic,Giant Magnetoresistance,Magnetic sensor,Spintronics,Sputtering,Trilayer[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.535-537.1319[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]