[vc_empty_space][vc_empty_space]
Electrochemical impedance study of the poisoning behaviour of Ni-based anodes at low concentrations of H2S in an MCFC
Devianto H.a,b, Simonetti E.b, McPhail S.J.b, Zaza F.b, Cigolotti V.b, Paoletti C.b, Moreno A.b, La Barbera A.b, Luisetto I.c
a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia
b ENEA Technical Unit Renewable Sources – Hydrogen and Fuel Cells, Italy
c Department of Mechanical and Industrial Engineering, University of Roma Tre, Italy
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The effect was investigated of low H2S concentrations, simulating biogas impurity, on the poisoning behaviour of a Ni-based, molten carbonate fuel cell anode. A conventional Ni-Cr anode was coated with ceria using dip coating to form a rare earth metal oxide thin layer on the surface of the anode. Electrochemical studies of the Ni-based samples were performed in symmetric cells under anode atmosphere (H2, CO2, H 2O and N2 as balance) with 2, 6, 12, and 24 ppm of H 2S by means of electrochemical impedance spectroscopy. The recorded data showed that the poisoning resistance was enhanced at low coating percentages of ceria; effects depend on H2S concentration and the applied load. These results were confirmed by electrochemical impedance tests where the cerium oxide addition appears through stable polarization behaviour up to 6 ppm of H2S, particularly in the mass transfer region. The protection is explained by the depression of poisoned Ni active sites and formation of a protective layer to the metal surface. The ceria coating layer is a potential solution to reduce H2S poisoning of MCFCs fuelled with biogas. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active site,Applied loads,Cerium oxides,Coating layer,Dip coating,EIS,Electrochemical impedance,Electrochemical studies,Low concentrations,Metal surfaces,Molten carbonate,Potential solutions,Protective layers,Rare-earth metal oxide,Thin layers[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Ceria,EIS,H2S poisoning,MCFC[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijhydene.2012.03.110[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]