[vc_empty_space][vc_empty_space]
Longitudinal dynamic system modeling of a fixed-wing UAV towards autonomous flight control system development: A case study of BPPT wulung UAV platform
Triputra F.R.a, Trilaksono B.R.a, Sasongko R.A.a, Dahsyat M.b
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b Technology Center for Defense and Security Industries, Badan Pengkajian Dan Penerapan Teknologi Komplek Puspiptek Serpong, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Developing an autonomous flight control system for a fixed-wing unmanned aerial vehicle (UAV) requires the mathematical representation of the system dynamics which can be obtained by applying analytical and/or empirical methods. This paper presents a method for modeling the flight dynamics of the fixed-wing UAV by analytically developing the model structure. The aerodynamic parameters/coefficients of the UAV, to be inserted into the dynamic model, are computed using DATCOM software, by considering various flight condition determined by the angles of attack, altitudes and velocities. In addition to that, an empirical model is also formed based on flight test data, which has been already processed using Kalman filter, to validate the analytical model. By comparing the simulation result of these two systems representations, it can be seen that the both approaches produce dynamic models that have similar characteristics. © 2012 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aerodynamic parameters,analytical-empirical comparison,Angles of attack,Autonomous flight control,Empirical method,Empirical model,Flight conditions,Flight test data,Longitudinal dynamics,Mathematical representations,System development,System Dynamics,System modeling,Systems representation,UAV platform[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]analytical-empirical comparison,DATCOM aerodynamics,fixed-wing UAV,flight dynamics,system modeling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEngT.2012.6339294[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]