[vc_empty_space][vc_empty_space]
Bandwidth enhancement of artificial magnetic conductor-based microwave absorber using square patch corner cutting
Dewantari A.a, Munir A.a
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, ITB, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A method for enhancing the bandwidth of microwave absorber is proposed. The absorber which is constructed from artificial magnetic conductor (AMC) consists of an array of copper square patches printed on a grounded 3.2mm thick FR4-Epoxy dielectric substrate. The proposed method is carried out by reducing the area of square patches; in this case, it is conducted by cutting the corners of square patch yielding a patch in octagonal shape. It shows that the proposed method which yields an equilateral octahedral patch with size of 9.53mm on each edge can widen the bandwidth up to 29.5% compared to the bandwidth of square patched absorber. The method also increases the resonant frequency of microwave absorber from 2.4GHz to 2.84GHz. In addition, to improve the value of reflection coefficient, external resistors are put between adjacent patches which are parallel to the electric field excitation. © 2012 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adjacent patches,Artificial magnetic conductors,Bandwidth enhancement,corner-cutting,Dielectric substrates,Electric field excitation,External resistors,Microwave absorbers,Octagonal shapes,Return loss[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]artificial magnetic conductor,bandwidth enhancement,corner-cutting,resonant frequency,return loss[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA.2012.6366053[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]