[vc_empty_space][vc_empty_space]
Inductance and capacitance reformulation of square patch-based artificial magnetic conductor
Suraperwata A.V.a, Olivia L.a, Munir A.a
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The formulation of inductance (L) and capacitance (C) derived from conformal mapping theory, in some cases, needs some corrections to be accomplished with the application as the used of different circumstances. In this paper, the value of L and C for artificial magnetic conductor (AMC) structured from square patches is investigated numerically to be reformulated based on analytical study. The analysis is conducted using the simulation results of AMC structure which are processed through the regression analysis. The AMC structure used for analysis is built from a two-dimensionally arrayed square patches deployed on FR4 Epoxy dielectric substrate. The frequency range of analysis which is intended are from 1GHz to 5GHz is corresponding with the working frequency of unit cell square patch. Hence, the analyzed parameters of unit cell include substrate width, substrate thickness, substrate properties, patch width, and gap width between patches. From the analysis result, it is shown that the properties of dielectric substrate, i.e. relative permittivity and relative permeability, have no influence to the LC formulation. In conclusion, the overall correction factors for LC reformulation gives the maximum frequency deviation of 9.59% which is divided into 2 frequency ranges, 1GHz to 2.5GHz and 2.5GHz to 5GHz. © 2012 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]2 frequencies,Artificial magnetic conductors,Conformal mapping theory,Correction factors,Dielectric substrates,Frequency ranges,Gap widths,inductor and capacitor formulation,Maximum frequency,Patch width,Relative permeability,Relative permittivity,square patch,Substrate properties,Substrate thickness,Unit cells,Working frequency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial magnetic conductor,correction factor,inductor and capacitor formulation,square patch[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA.2012.6366048[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]