Enter your keyword

2-s2.0-84873170098

[vc_empty_space][vc_empty_space]

Cavity reflection-transmission-perturbation method for foliage relative permittivity measurement

Munir A.a, Prasetiadi A.E.a, Effendi M.R.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The information of foliage relative permittivity is one of important properties in the design of microwave communications or radar systems, especially in forest area. In this paper, the measurement of foliage relative permittivity is proposed based on the cavity reflection-transmission- perturbation method. The technique that uses a rectangular waveguide combines the reflection/transmission method that can keep the foliage undestroyed and the cavity perturbation method that has high accuracy. Prior to the foliage relative permittivity measurement, the proposed method is numerically analyzed based on rectangular waveguide and then experimentally verified for some known dielectric materials. From the measurement of some foliage samples in Indonesia, the relative permittivity of foliage shows the different result that depends on the moisture content in each foliage sample. It shows that the proposed method is easier and more suitable as the foliage can be kept undestroyed for the measurement. © 2012 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cavity perturbation method,Forest area,Indonesia,Microwave communications,Perturbation method,Reflection transmissions,Relative permittivity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]cavity reflection-transmission- perturbation method,foliage,rectangular waveguide,relative permittivity measurement[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/RFIT.2012.6401664[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]