[vc_empty_space][vc_empty_space]
Formation of titanium oxide by thermal-electrochemical process on the blasted titanium alloys substrate
Ramdan R.D.a, Djuansjah J.R.P.b, Kadir M.R.A.b, Nur H.b, Hamzah E.b
a Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia
b Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Malaysia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Titanium oxide is believed as one of the key factors that influence the excellent corrosion properties as well as biocompatibility of titanium alloy. In the present research, thermalelectrochemical anodizing processes were performed in order to form thick layer of titanium oxide on titanium alloys (Ti6Al4V) surface. Oxidation temperature, blasting and anodizing voltage were selected as the evaluated parameters process at the present study. It was observed that temperature plays important role in the formation of oxide layer, where the thickness of the oxide increases significantly as temperature increases. However, for the case of oxide layer formed by thermal oxidation at temperature of 950°C, oxide layer on the non-blasted sample become easily peel off, whereas oxide layer on the blasted sample shows good adhesion properties. In addition, oxide layer on the blasted samples also have thicker layer as compared with oxide on the non-blasted sample. On the other hand, it was observed that further oxidation by anodizing at 43V and 63V create finer oxide layer by the filled up of porosity on the existing oxide layer. However decreasing of oxide layer thickness was also observed after anodizing, which is predicted due to the breaking up the outer oxide layer during anodizing process. © (2013) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adhesion properties,Anodizing process,Anodizing voltage,Corrosion property,Oxidation temperature,Oxide layer,Oxide layer thickness,Temperature increase,Thermal oxidation,Thermal-electrochemical process,Thick layers,Ti-6al-4v[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Blasting,Thermal-electrochemical process,Titanium oxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.650.12[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]