[vc_empty_space][vc_empty_space]
Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant
Darwanto D.a, Hamdani D.a, Hariyanto D.D.b, Karyawan O.H.c
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b PT. Pertamina, Indonesia
c Chevron Geothermal Indonesia, Ltd., Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measuremen data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance. © 2012 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Auto-regressive,Critical condition,goethermal,Industrial power supplies,Partial discharge analysis,Partial discharge characteristics,PD measurements,Predictive maintenance,Stator winding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]goethermal,insulation,partial discharge,predictive maintenance,vector autoregressive[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/CMD.2012.6416325[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]