Enter your keyword

2-s2.0-84875096644

[vc_empty_space][vc_empty_space]

The use of IAcM to identify stationarity of the generalized STAR models

Mukhaiyar U.a, Pasaribu U.S.a

a Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A new approach of identifying stationarity of the space-time processes through the Invers of Autocovariance Matrix (IAcM) is proposed. In particular, we consider the first order Generalized Space Time Autoregressive (GSTAR(1;1)) model. This model is considered to be more representative model in space-time modeling due to its realistic assumption on the uniqueness of spatial location. We are exploring the behavior of the IAcM on behalf of the process stationarity. The stationary condition is a must for GSTAR process to be able to apply in space-time modeling. We obtain that the IAcM may be stated as the function of autoregressive parameters and weight spatial. For the confirmation we carry out numerical analysis for various autoregressive parameter matrices and weight matrices. Through some simulations, we illustrate how significant the autoregressive parameters and weight spatial matrices influence the behavior of the IAcM. © 2012 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Auto-regressive,Autocovariance matrices,Space time process,stationary,Weight matrices[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]autoregressive,invers of autocovariance matrix,space-time process,stationary,weight matrix[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/CCSII.2012.6470511[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]