[vc_empty_space][vc_empty_space]
Analyzing OSS project health with heterogeneous data sources
Sunindyo W.D.a,b, Moser T.a, Winkler D.a, Biffl S.a
a Vienna University of Technology, Austria
b Bandung Insitute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Stakeholders in Open Source Software (OSS) projects need to determine whether a project is likely to sustain for a sufficient period of time in order to justify their investments into this project. In an OSS project context, there are typically several data sources and OSS processes relevant for determining project health indicators. However, even within one project these data sources often are technically and/or semantically heterogeneous, which makes data collection and analysis tedious and error prone. In this paper, the authors propose and evaluate a framework for OSS data analysis (FOSSDA), which enables the efficient collection, integration, and analysis of data from heterogeneous sources. Major results of the empirical studies are: (a) the framework is useful for integrating data from heterogeneous data sources effectively and (b) project health indicators based on integrated data analyses were found to be more accurate than analyses based on individual non-integrated data sources. Copyright © 2011, IGI Global.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analysis of data,Empirical studies,Heterogeneous data sources,Heterogeneous sources,Open Source Software,Open source software projects,Product metrics,Project healths[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computer science,Information systems,Open source software,Process and product metrics,Project health indicators,Project management[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work has been supported by the Christian Doppler Forschungsgesellschaft, the BMWFJ, Austria and Ministry of National Education of Indonesia. We thank the reviewers for their insightful feedback to improve this paper.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4018/jossp.2011100101[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]