Enter your keyword

2-s2.0-84875771210

[vc_empty_space][vc_empty_space]

Molecular dynamic simulation on iron corrosion-reduction in high temperature molten lead-bismuth eutectic

Arkundato A.a,b, Su’ud Z.a, Abdullah M.a, Sutrisno W.a

a Department of Physics, Bandung Institute of Technology, Indonesia
b Department of Physics, Jember University, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Molecular dynamic simulation on iron in high-temperature molten lead-bismuth eutectic has been carried out to investigate the iron corrosion and its mitigation. The aim of the work is to investigate the corrosion and evaluate proper oxygen content of injection for significant and effective reduction. To study the phenomena we calculated the diffusion coefficients, radial distribution functions and mean square displacement of iron, and also observed the microstructure of iron before and after oxygen injection into coolant. The present calculation shows that a significant and effective reduction of corrosion can be achieved by injection of 7.68×10 -2 -1.55×10 -1 wt% into coolant at temperature 750 ° C. It is predicted that the lower limit of oxygen content, 7.68×10 -2 wt%, is the minimum value to develop a self-healing stable protective oxide film for preventing high dissolution of iron; and that the upper limit of oxygen content, 1.55×10 -1 wt%, is the maximum value in order to avoid the precipitation of coolant oxides. By injection of 7.68×10 -2 wt% of oxygen, the corrosion rate has been reduced about 92.16% at 750 ° C, and reduced by 98.66% at the lower temperature 550 ° C, compared with the normal, oxygenless condition.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lead-bismuth eutectics,Lower temperatures,Mean square displacement,Oxygen content,Oxygen injection,Protective oxide films,Pure iron,Radial distribution functions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Corrosion of pure iron,Diffusion,Lead-bismuth eutectic,Molecular dynamic,Oxygen content[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3906/fiz-1112-12[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]