Enter your keyword

2-s2.0-84880782209

[vc_empty_space][vc_empty_space]

Some aspects of spherical symmetric extremal dyonic black holes in 4D N = 1 supergravity

Gunara B.E.a, Zen F.P.a, Akbar F.T.a, Suroso A.a, Ariantoa,b

a Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Department of Physics, Udayana University, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper, we study several aspects of extremal spherical symmetric black hole solutions of four-dimensional N = 1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region, the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and nonzero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincide. In addition, we prove the local existence of nontrivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple ℂn-models with both linear superpotential and gauge couplings. © World Scientific Publishing Company.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Black holes,constant scalar curvature,N = 1 supergravity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]One of us, B. E. Gunara, would like to thank T. Kimura and P. Smyth for valuable discussions. He is also grateful to J. Louis and the people at II. Insti-tut für Theoretische Physik, Universität Hamburg for warmest hospitality during his stay. We also greatly thank M. Satriawan for proof reading the manuscript and correcting some grammar. This paper was initially funded by ITB Alumni Association Research Grant (HR IA-ITB) 2009 No. 180a/K01.7/PL/2009 and IMHERE DIKTI Project 2010, ITB Alumni Association Research Grant (HR IA-ITB) 2010 No. 1443b/K01.7/PL/2010, ITB Alumni Association Research Grant[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1142/S0217751X1350084X[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]