[vc_empty_space][vc_empty_space]
Tortuosity-porosity relationship in two-dimensional fractal model of porous media
Feranie S.a, Latief F.D.E.b
a Physics Department, Faculty of Mathematics and Natural Sciences, Indonesia University of Education, Indonesia
b Physics of Complex Systems, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Tortuosity (τ) of two-dimensional fractal model of porous media is investigated to study their relationship with porosity. Square full-walk technique is applied to obtain τ in a two-dimensional fractal model of porous substance constructed by Randomized Sierspinski Carpets. The numerical result is in good agreement with previous results and empirical relation between tortuosity and porosity given by τ ∼ p(1 – φ) + 1 that was found by other using Lattice Gas Automata method for solving flow equation on two-dimensional porous substance constructed by randomly placed rectangles of equal size and with unrestricted overlap. Average tortuosity of the flow path decreases linearly as fractal dimension of pore increases at each fractal iteration. Both fractal dimension and iteration give almost the same linearly tortuosity-porosity relation. The type of random algorithm for constructing Randomized Sierspinski Carpets has no significant influence on the tortuosity-porosity relation. © 2013 World Scientific Publishing Company.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Empirical relations,Flow equations,Fractal model,Lattice-gas automaton,Numerical results,Random algorithms,Randomized Sierspinski Carpets,Tortuosity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Porosity,Randomized Sierspinski Carpets,Tortuosity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1142/S0218348X13500138[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]