[vc_empty_space][vc_empty_space]
First carbon ring closures started by the combustive radical addition of propargyl to butadiyne. A theoretical study
Maranzana A.a, Indarto A.b, Ghigo G.a, Tonachini G.a
a Dipartimento di Chimica, Università di Torino, Italy
b Department of Chemical Engineering, Bandung Institute of Technology, Benny Subianto (Labtek V) Building, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Formation of the first ring structure from small aliphatic molecules is often regarded as the rate-determining step (and in any case as a step of paramount importance) in the combustive growth of larger aromatic systems and soot lamellae. Among possible reactions able to start off this process, the radical addition of the propargyl radical to butadiyne (diacetylene) has been recently studied theoretically [G. da Silva, A. Trevitt, Phys. Chem. Chem. Phys. 13 (2011) 8940] and shown to lead preferentially to a 5-membered ring intermediate. The same reaction is here addressed focusing instead on the possible formation of 6-membered rings. The large variety of partially intertwined reaction pathways is the basis for a subsequent RRKM study (carried out at different combustion temperatures). It confirms, on one hand, the favored formation of fulvenallenyl radical indicated by da Silva and Trevitt, but also indicates the possible formation of six-membered cyclic systems as minor products. In particular, at high pressure, six-membered ring system yields are very low, but at lower pressures a more significant yield of six-membered ring product is predicted. © 2013 The Combustion Institute..[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Butadiyne,Combustion temperatures,First 6-ring,PAH formations,Propargyl,Propargyl radical,Rate determining step,Six-membered rings[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Butadiyne,First 6-ring,PAH formation,Propargyl[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was conducted in the frame of EC FP6 NoE ACCENT and ACCENT–PLUS projects (Atmospheric Composition Change, the European NeTwork of Excellence). Financial support has been provided by the Italian MIUR, within the Programma di Ricerca Scientifica di Rilevante Interesse Nazionale “Studi fondamentali ed interdisciplinari di chimica ionica e neutra in fase gassosa” (PRIN 2009).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.combustflame.2013.05.024[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]