[vc_empty_space][vc_empty_space]
Single-crystal study on the low-temperature magnetism of the pyrochlore magnet Pr2Zr2O7
Kimura K.a, Nakatsuji S.a, Nugroho A.A.b
a Institute for Solid State Physics, The University of Tokyo, Japan
b Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A single-crystal study on the low-temperature magnetism of a pyrochlore magnet Pr2Zr2O7 has been carried out. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 1.9 K. The Curie-Weiss behavior was observed at temperatures below 10 K, yielding an effective moment μeff = 2.5μB. This result, combined with those of recent reports on other Pr3+ pyrochlore magnets, suggests that the ground state of the Pr3+ crystal electric field is a well-separated magnetic doublet. An anisotropic magnetization process is observed at lower temperatures, and the saturated magnetization values along the three high-symmetry directions are consistent with a local 〈111〉 Ising anisotropy with a magnetic moment g J J = μeff = 2.5μB. © 2013 The Korean Physical Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Geometrical spin frustration,Pyrochlore magnet[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank Y. Ohta, C. Broholm, and J.-J. Wen for helpful discussions. This work is partially supported by a Grant-in-Aid for Scientific Research (Nos. 21684019 and 23740259) from the Japan Society for the Promotion of Science (JSPS), by a Grant-in-Aid for Scientific Research on Priority Areas (No. 19052003) from the Ministry of Education, Culture, Sport, Science and Technology (MEXT), Japan, by the Global COE Program “the Physical Sciences Frontier” from MEXT, Japan, and by a Toray Science and Technology Grant. One of the authors (KK) is supported by a JSPS Research Fellowship. The use of the Materials Design and Characterization Laboratory at ISSP is gratefully acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3938/jkps.63.719[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]