Enter your keyword

2-s2.0-84886258285

[vc_empty_space][vc_empty_space]

Synthesis and characterization of bacterialcellulose-based carbon nanotubeby catalyticgraphitization

Chaldun E.R.a, Karina M.a, Purwasasmita B.S.b

a Research Center for Physics, Indonesian Institute of Sciences, Indonesia
b Laboratory of Material Processing, Engineering Physics Department, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Bacterial cellulose-based carbon nanotube has been synthesized by catalytic graphitization method. Bacterial cellulose (BS) is a source of cellulose produced from fermentation of medium by Acetobacter xylinum. Since it contains unbranch polymer linked by β-1.4 glucopyronose with hydroxil groups, BS is able to use as precursor in synthesis of carbon nanotube. Due to catalytic graphitization, chitosan served as coupling agent and dispersant of catalyst and various concentration of catalyst FeCl3.6H2O also were used. Graphitization was conducted in furnace with inert nitrogen gas atmosphere at 800°C for 2 hours. SEM-EDS were used to evaluate the morphology and semi-quantitative analysis of sample. TEM was used to determine the microstructures and crystallographic. When the chitosan was added 0.5%, its served as coupling agent and dispersant of catalyst with BS. Chitosan improved physical properties, relieved its brittleness, and caused the optical properties of BS. Catalyst of FeCl3.6H2O was used to assist the formation and growth of carbon nanotube. The amount of carbon was not affected by time aging. 0.1 M FeCl3.6H2O was the optimum concentration to produce carbon nanotube with 81, 58% the mass of carbon, plane orientation (002) (100) and the diameter of carbon nanotube is 25 nm. © (2013) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acetobacter xylinum,Bacterial cellulosa (BS),Catalytic graphitization,Diameter of carbon nanotubes,FeCl3.6H2O,Optimum concentration,Semi-quantitative analysis,Synthesis and characterizations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bacterial cellulosa (BS),Catalytic graphitization,Chitosan,FECL3.6H2O,Graphite[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.789.232[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]