Enter your keyword

2-s2.0-84886260880

[vc_empty_space][vc_empty_space]

Synthesis of SnO2 nano structure thin film and its prospective as gas sensors

Yuliarto B.a, Nugraha N.a, Epindonta B.a, Aditia R.a, Iqbal M.a

a Advanced Functionals Materials Laboratory, Engineering Physics Department, InstitutTeknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This report describes the preparation of gas sensors based on SnO2 semiconductor nanostructure thin films synthesized using chemical bath deposition (CBD) technique. As the rapid demand of the gas sensors based on the semiconductor materials, there have been significant efforts to improve the performance of the semiconductors sensors. SnO2, which has good electrical and mechanical properties, is one of the potential materials to be developed. In the present study, the SnO2, prepared using CBD technique with stannous cloride as precursors, has nano pattern that give much SO2 particles to access into the semiconductor surface. The resulting nano structure SnO2 thin films have been confirmed by X Ray Diffractions (XRD), Energy Dispersive Spectroscopy (EDS) and Scanning Electronic Micrsocopy(SEM). The as fabricated SnO2 thin films sensorswere then characterized as SO2 gas sensors in various concentrations for several different operating temperatures. The sensors have good sensitivity as low as 30 ppm of SO2 gas at the optimum temperature of 200° C. © (2013) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical-bath deposition,Electrical and mechanical properties,Energy dispersive spectroscopies (EDS),Operating temperature,Potential materials,Semi-conductor surfaces,Semiconductor nanostructures,SnO2[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical bath depositions,Nano structure,Sensor,SnO2,SO2 gas,Thin films[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.789.189[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]