[vc_empty_space][vc_empty_space]
Development of an inversion method for low velocity medium
Afnimara, Nugraha A.D.a, Syahputra A.a
a Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The main problem with the inversion of a low velocity medium is the application of an appropriate ray tracing method after choosing a suitable model parameterization. Block parameterization is not suitable, because it is not capable of representing the velocity model well. A large amount of blocks with a small grid size are needed to express the model well, but in that case, a ray coverage problem will be encountered. A knot-point parameterization model is better suited than a block model, because it can express the velocity model well, while the number of variables is much smaller. Ray calculation using the pseudo-bending method is not appropriate for the velocity model because of an instability problem at high velocity gradients. The crucial problem of this method involves the initial ray-path that is optimized in order to obtain the “true” ray, but does not satisfy the Fermat principle. These problems can be solved by applying the eikonal-solver method, because this can handle high-velocity gradients and does not need an initial ray path. Using a suitable model parameterization and appropriate ray tracing method, the inversion can obtain good results that fit the desired output. Applying a block model and the pseudo-bending method will not produce the desired output. © 2013 Published by ITB Journal Publisher.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Eikonal-solver method,Fermat principle,Knot-point parameterization,Low velocity structure,Pseudo-bending method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.math.fund.sci.2013.45.1.8[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]