[vc_empty_space][vc_empty_space]
Design and implementation of driver drowsiness detection system on digitalized driver system
Rusmin P.H.a, Osmond A.B.a, Syaichu-Rohman A.a
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In Indonesia, based on data from police, from the 2007-2010 at least 218 253 number of accidents occur. Approximately 65% of accidents occur due to human negligence. At the time of Eid 23 August to 7 September 2011, the number of accidents that occur most often caused by drowsy drivers (1,018 cases), followed by airworthiness vehicles (449 cases), roadworthiness (387 cases), and speed (155 cases). Drowsiness detection system created to reduce the risk of accident while driving. The system will records image of driver then face and eyes will be detected. Results of eyes detection, each frame value will be analyzed if eyes are closed for 4 seconds. If eyes close for 4 seconds then system will decide that driver is sleepy and alarm will sound. From the experiment, average result for detection is 954 ms, best position of camera is above the driver on the dashboard and for bright condition. © 2013 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Best position,Design and implementations,Driver drowsiness,Driver systems,Drowsiness detection,Eyes detection,Human negligence,Risk of accidents[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]computer vision,drowsiness detection system,eyes detection,image processing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEngT.2013.6650203[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]