Enter your keyword

2-s2.0-84893059645

[vc_empty_space][vc_empty_space]

Spin-density-wave ordering in Ca 0.5 Sr 1.5 RuO 4 studied by neutron scattering

Kunkemoller S.a, Nugroho A.A.b, Sidis Y., Braden M.a

a II. Physikalisches Institut, Universität zu Köln, Germany
b Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
c Laboratoire Léon Brillouin, CEA/CNRS, France

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The spin-density-wave ordering in Ca0.5Sr1.5RuO4 was studied by polarized and unpolarized neutron diffraction experiments. Below about 20 K Ca0.5Sr1.5RuO4 exhibits quasistatic correlations at exactly the incommensurate wave vector at which pure Sr2RuO4 shows strong inelastic fluctuations driven by Fermi-surface nesting. The magnetic character of the signal and the orientation of the ordered moments along the c direction can be ascertained by neutron polarization analysis. The magnetic ordering at low temperature is very similar to that found upon minor Ti substitution of Sr2RuO4, underlining that this incommensurate spin density wave is the dominant magnetic instability of the unconventional superconductor Sr2RuO4. © 2014 American Physical Society.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevB.89.045119[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]